
Smart Phone Powered Laptop

Nick Steele, Kevin Ogando, Ameer Hakh,
Anirudh Singh

University of Central Florida School of
Electrical Engineering and Computer

Science, Orlando, FL

Abstract – An unique computer and electrical
engineering project where we utilize the many
components of a smartphone (CPU, RAM, Storage, Wi-
Fi Card) to run a windows like experience of android on
a laptop shell. The laptop itself is just a screen, battery,
keyboard, and touchpad. The phone is charged when it is
put inside the laptop. The keyboard, touchpad, and
screen all communicate wirelessly with the smartphone
via Wi-Fi and Bluetooth.

I. INTRODUCTION

In today’s world you will notice the majority of people

have a cell phone. This is because Smartphones are

widely accepted as a necessity in today’s society.

Smartphones are the modern technological multi-tool;

they provide security, entertainment, social interaction,
and almost infinitely other things. In the United States,

children are getting Smartphones as early as age 6. This

fact speaks volumes about how accessible phones are

in today’s Society. Unfortunately, with the

advancement in technology has also come with an

increase in price. Smartphones are costing anywhere

from seven hundred to a thousand dollars each. In our

modern market, this is very similar with today's prices

of laptops. To some, this price comparison makes

sense; we do a lot of similar work on our smart phones

as we do our laptops today. This includes things such
as checking email, browsing the web, watching videos,

and even playing games. Even from a hardware level

these devices have a similar setup. Both devices

include a central processing unit (CPU), a graphics

processing unit (GPU), a high-resolution screen, a

battery, a camera, and storage. Showing how similar

both devices are and how commonly we use them for

the same tasks makes you wonder, why do we have to

buy both? Why not have devices that can serve as both

a laptop and a smartphone? Not only would this save

the consumer hundreds of dollars on average, but it

could also make laptop style computer more accessible
to those who cannot afford both. Laptops are a

common learning tool in today's schools and with most

students and children already having these smart

devices, making it even that much more crucial that

laptops are affordable and accessible to students. Our

project makes this Possible because were not using a

fully functional machine, the goal of our project is to

use a non-functional computer and apply functionality

to it with the help of a microcontroller unit, Bluetooth
module, and Wi-Fi module housed on a printed circuit

board will give our product the same functionality as a

normal functional computer. However, the main

component required to demonstrate the design is an

Android device. The entire design is dependent on the

smartphone since the laptop will only display the

contents of the smartphone. In conclusion our product

offers the use of a computer through an Android smart

phone.

II. SYSTEM COMPONENTS

The system is best presented in terms of system

components which are the individual physical modules

whether purchased or designed that are interfaced to create

the final product. This section provides technical detail of

each component used.

A. Microcontroller

For the development of the final prototype of the smart

phone powered laptop, two microcontrollers were required.

First, was the ATMega 2560 and second was the Raspberry

pi. The ATMega 2560 is taking the inputs from the

ASUSG50V laptop keyboard and touchpad and sending

that to the android phone via the RN42HID Bluetooth

module. The other choices instead of ATMega2560 were

the ATMega328 and the MSP430F4551PN. The reason

behind picking ATMega2560 over the ATMega 328 is that

the ATMEGA 2560 consists of 54 Digital Input/output pins

whereas the ATMega 328 only consists of 14 Digital

Input/output pins. The Digital Input/output pins was a huge

factor for deciding on which Arduino mcu to choose

because the keyboard consists of a ribbon cable since it is

the keyboard of the shell laptop (ASUSG50V) and the

ribbon cable has 24 pins so ATMega 328 was clearly not

the right choice since it does not contain enough digital I/o

pins to establish a successful connection between the

keyboard and the Arduino mcu, hence the ATMega 2560

Arduino was used.

The second reason for choosing the ATMega 2560 over

the MSP430f4551PN was the desired clock rate and the

core size. The MSP430F4551PN has a clock rate of 8MHz

and a core size of 16 bit whereas the ATMega 2560 has a

clock rate of 16MHz and a core size of 64 bit which allows

it to produce the output at a faster rate than the

MSP430F4551PN.

The Raspberry pi is the heart of the project because the

soul function of the raspberry pi is to mirror the android

phone screen onto the LCD screen of the shell laptop. The

reason behind choosing the raspberry pi for screen

mirroring is that it matches the Wi-Fi direct standard for

screen mirroring and it has enough computing power to

process the data that is sent from the android phone to the

LCD screen of the shell laptop.

B. Keyboard

Using our original Asus Keyboard (part#

04GNED1KUK10), we established our Bluetooth

connectivity pairing this with the atMega2560. We learned

that keyboards function from a matrix to properly output

the desired key. We looked online for blueprint for our

existing keyboard but found no data. In an attempt to

identify each key on our own, we used a multimeter and

started independently testing connection combinations

while pressing the keyboard keys. We found this to be

incredibly time consuming and started looking for

alternatives to map out our key matrix. We came across a

project using a teensyduino and a sketch that ran an

automated continuity tester that would print out our whole

matrix. This worked successfully with our keyboard. Once

this was working we needed to find a library that would

work with our matrix to output the keys. We originally tried

to use the keyboard.h library but found out that it only

worked on Arduino devise using the ATmega32u4

processor. Because we really wanted to use the appropriate

Arduino library to make our keyboard work, we attempted

to use work around that would allow us to use the

keyboard.h library on other Arduino boards. This method

had to use one of the two processors on the ATmega2560

and have us use it as a ATmega32u4 processor. This

method didn’t work for us because we still didn’t have

enough pins to map out our 16 by 8 matrix to use our whole

keyboard. Finally, we found the keypad.h library which

could be used on any Arduino and used a matrix just like

that of a keyboard. Our issues with the library were that it

was difficult getting the multi-key press support to work

properly because there was no documentation. Once we had

this working, we developed our Bluetooth code to send our

raw HID packets. The only issue left was the Bluetooth

function required hexadecimal, but our keypad library code

could only output characters. We simply then wrote a

function to convert the characters to hexadecimal.

To summarize our functionality When a key is pressed its

state is recorded by the keypad library, the library outputs a

character which is sent through our custom transfer

function which changes the code from its character value to

the proper hexadecimal code for Bluetooth. Finally, our

Bluetooth function packages the HID output with the

proper hex from the transfer function. This then outputs the

proper keys to our android phone.

C. Synaptics Touchpad

The TM- is a touchpad revived from the ASUS G50 laptop.

The Synaptics touchpad communicates using a

bidirectional synchronous serial protocol, which is known

for transmitting signals on data and clock lines. In this

project the touchpad will act just as it usually acts on a

computer, except wirelessly to an Android phone. Due to

its raw data, a program must be made to follow the PS/2

communication. This protocol consumes roughly 100mA

at 5V, which equates to 0.5 W power consumed.

D. Bluetooth

The RN42 is a fully certified Class 2 Bluetooth module

with a built in antenna, shield, and an onboard Bluetooth

stack. Furthermore, this module supports HID firmware,

which allows for easy do it yourself computer peripherals,

such as a mouse, keyboard, and even a joystick.

Communication can be established using UART or a simple

USB hardware interface with a baud rate of up to 115200

bps. In this project, UART is used due to the project

complexity and necessary I/O pins.

E. Regulators

Regulators are fuel for the engine, which makes them so

important when picking components. In this case, each

module, component, or IC needs its own fuel and they all

have various current requirements.

 F. System Hardware Concept

In a system, software and hardware work together to

achieve an overall working system. Now let’s look at how

the software is implemented through hardware. This block

diagram indicates hardware flow starting at the lower level

components located inside the Atmel 2560 chip and

flowing all the way to the user peripherals such as the

keyboard, touchpad, and LCD.

Fig. 1. Block Diagram showing major internal components on
the MCU and external components.

The main communication busses shown in the system

are:

(1) SPI to program the Atmega 2560 using Atmel Ice

Debugger.

(2) UART to configure Bluetooth and transmit wirelessly.

(3) Wi-Fi Direct to communicate with Android phone

wirelessly to LCD display.

G. USB 2.0 Phone Charging

While having the Wi-Fi and Bluetooth on in a cellular

device, these peripherals will take up a lot of battery power.

In order to keep the Android device powered on and to

charge the Android device to an efficient battery level. We

do this by implementing USB 2.0 charging, with the

LM7805 chip. Also, particularly with Android devices,

there must be a minimum threshold of 1.2V between the

data lines (D- and D+) in order to charge the phone at a

higher current than the minimum 500mA that is mandated

in the USB 2.0 power specifications.

H. Battery Charging

In this system we are using lithium ion batteries,

discussed in section G, so we can implement a charging

system to recharge the lithium ion cells. We do this by using

the BQ24600 chip from Texas Instruments. We have an

input voltage from a 12V AC adapter plugged into the wall

outlet to the DC jack on our charging circuit. The charging

circuit then outputs a charging current of 3A to the battery,

while also monitoring the temperature of the battery via a

thermistor and can monitor the battery capacity in order to

either charge or terminate the charge to the battery.

I. Battery LED Indication

In order for us to identify what percentage the battery is

currently at, we have implemented an LED indication

circuit by using an LED driver chip called LM3914 by

Texas Instruments. With this LED driver circuit we can

accurately display the capacity of the battery at about a

0.1V discrepancy. We have a total of 10 LEDs, 6 Green, 3

Yellow, and 3 Red LEDs. The green LEDs indicate a higher

capacity, while the yellow and red LEDs indicate that the

battery be plugged in to charge.

J. Voltage Levels

Along with the software components of the system, let’s

take a look at the power requirements for the main hardware

components that make up our system. The Raspberry Pi

module requires 5V, rated at 3A. USB 2.0 phone charging

requires 5V, rated at 1A but draws 0.66A of current. The

Bluetooth module, RN42, requires 3.3V which has a low

power draw and a built in DC-to-DC regulator which steps

down a 5V input to 3.3V. Next is the LCD screen, which

needs a minimum 10V input rated at 3A of current, but

draws about ~0.7A. Touchpad and keyboard are low power

hardware components and only draw under 200mA of

current at 5V.

The battery LED indication circuit is also low power,

drawing about ~40mA of current and can measure the

capacity of any battery within the voltage range of 8V to

11.1V. The battery charging circuit with the BQ24600

Texas Instruments chip can take an input voltage of 28V

rated at 10A of output charging current. But, we have set

the BQ24600 chip to handle a 12V input, from a 12V AC

adapter, and output a charging current of 3A towards the

battery. Finally, the battery management system is a 3-

Series system that manages the charging current

distribution to each individual cells in order to balance them

properly. Also, the BMS can properly discharge the battery

without changing the capacities of the battery cells.

Below shows the overall power design for our system.

Fig. 2. Block diagram showing the power design with inputs
and outputs for each circuit.

J. Laptop Battery

 In this design, we chose a laptop battery that would

power the laptop for about 2-3 hours before needing to be

charged. We decided between lithium polymer and lithium

ion batteries, comparing the two choices we came to a

conclusion that lithium ion batteries hold a higher energy

charge density at a much cheaper cost than Lithium

polymer. But, at the expense of price and energy charge

density, comes the bulkiness of the Lithium Ion batteries

and adds more of a size to the laptop design. Instead of

creating our own 6-cell Lithium Ion battery pack, which can

be potentially dangerous due applying a very hot soldering

iron to the ends of each battery which can change the

capacitance of each individual cell, we went with the option

of buying a ready-made laptop battery. We purchased a 6-

Cell Lithium Ion battery pack rated at 11.1V and 4400mAh.

III. SOFTWARE DETAIL

To understand the complete system form a software point

of view, this section will discuss in general detail the

connection of the Android smart phone to the raspberry pi

and the communication between the mcu, Bluetooth, and

Android smart phone.

To begin with the connection of the Android smart phone

to the raspberry pi first a Wi-Fi Direct connection had to be

established between the android phone and the raspberry pi.

Now Wi-Fi Direct uses Wi=Fi Protected Setup (WPS) for

authentication that mainly consists of only two modes push

button control (PBC) and Pin code for this project we have

utilized the pin code authentication factor.

Fig. 3. Wi-Fi Direct Connection flowchart

Wi-Fi Direct is organized in groups and every group has

one group owner (GO) also only the group owner is allowed

to run the DHCP server to ensure that only one DHCP

server is running per group. A DHCP server is a network

server that automatically assigns IP addresses, default

gateways, and other network parameters to client devices,

in this case the android smart phone is the client device and

the raspberry pi is the group owner. Furthermore then the

wpa_supplicant.config file is accessed and under the device

name “p2p_go_ht40=1” this is added in order to support

802.11 for the group owner. Next the p2p interface is

assigned a static IP address and the DHCP server is enabled

on it which also assigns IP addresses to the client that

requests a connection to a group owner. The figure above

depicts a better description of how the peer to peer

communication is established.

Once the Wi-Fi Direct connection has been established

then sockets along with RTSP (Real Time Streaming

protocol) are used to get the data from the android phone to

the raspberry pi. Next sockets were utilized to send data

packets from the android phone to the raspberry pi. In the

sockets RTSP (Real Time Streaming Protocol) is used

along with UDP transfer protocol. There are several reasons

for choosing UDP over TCP and they are as follows. First

reason is connection, TCP is connection oriented and UDP

is connectionless which means that TCP requires a

connection between the server and client whereas UDP is

connectionless it does not require a connection between

client and server. Second is sequencing, TCP numbers each

packet that is sent so that the packets can be rearranged by

the recipient whereas UDP sends packets without

numbering. Third was the speed TCP is slower because the

packets are heavy due to header size which allows for error

checking and recovery if packets are lost whereas UDP is

faster because the packets are not heavy due to header size

and corrupted packets are discarded and not sent again.

However the main reason for choosing UDP was because it

supports applications like broadcasting which is very

similar to what is being done in this project. However RTSP

is commonly used with TCP but in this case RTSP will be

used to communicate the player to the server and then UDP

will be used to get the data packets from the server to the

client.

First the TCP socket will be created and then it will be

bound to the server which is the android phone, then the

UDP socket will be created and this will be bound to

raspberry pi using the local host address and port. Now the

method of delivery for the audio and video from the phone

to the raspberry pi will be Unicast delivery which uses RTP

(Real Time Protocol) over UDP transport protocol. In this

method the player (h.264) that is used to display the

streamed information establishes a control connection to

the server using RTSP (Real Time Streaming Protocol).

The player is started with an “rtsp://URL” this URL

includes the server IP address and the stream id. After some

back and forth communication between the player and the

server, during which the server sends the client an SDP file

describing the stream, the server begins sending video to

the client over UDP. Now since the packets are being sent

individually over UDP a GUI (Graphic user Interface) is

initialized which launches the player with the media stream

in it.

The software we are going to use to simulate a windows

like environment on our laptop through the android

operating system is called “Sentio Desktop”. It is free and

available through the Google play app store from a Los

Angeles based company named Sentio. The software is

compatible with any android device regardless of

manufacturer. The current version of software available in

the Google play store has amassed over one million

downloads.

IV. HARDWARE DETAIL

Each component in the system will be described in

further detail in this section, with the exception of the

microcontroller due to possible redundancy. Also, the

keyboard and touchpad will be combined into one section

due to how the overall system is integrated.

A. Bluetooth

In this project Bluetooth requires two wires for

communication, which meant minimal knowledge was

needed to properly configure the Bluetooth. The two wires

are:

(1) Transmit line (Tx), which is described as the data being

transmitted from the Bluetooth to the Atmega 2560. Only

during configuration is when the transmit line is needed.

(2) Receiving line (Rx), is the line that receives data from

the Atmega 2560 and transmits that data wirelessly to the

Android phone. Furthermore, logic level shifting is needed

to properly wire the Bluetooth. Since the Atmega 2560 uses

5V logic and the Bluetooth uses 3.3V logic, a voltage

divider is used to safely apply voltage to the Bluetooth on

its receiving line.

 The Bluetooth module has factory defaults which sets the

baud rate to 115200, 8 bits, no parity, and 1 stop bit. In order

to properly configure the Bluetooth module for the purpose

of this project, settings need to be changed. Luckily the

RN42 has AT commands that makes it relatively simple to

configure, as long as a proper program is written. The RN42

also has two status pins that help identify what state the

Bluetooth chip is in, through LEDs. One indicates the

connection state (ON/OFF) and the other toggles at two

different frequencies depending if the Bluetooth is waiting

for connection or if it’s in command mode. There are two

modes that the RN42 can be in, which are command mode

and data mode. Command mode is used to configure

settings within the chip and data mode is used to transmit

data packets via a data pipeline.

Fig. 4. A visual diagram of how command mode and data mode
flow in a Bluetooth system.

Nevertheless, the overall system of the Bluetooth and

how it sends keyboard and touchpad signals will be

described in the two following sub sections.

B. Synaptics Touchpad and Asus G50V Keyboard

The Synaptics touchpad was properly configured using

trial and error. Essentially, the touchpad had no schematics

indicating which pins were power, ground, clock, or data.

Due to prior experience, ground was found as the biggest

plane on the touchpad. Power was a little tricky, however it

was found at the node that connected the capacitor to

ground at the input. The Synaptics touchpad came with an

extra connector that had LEDs which illuminated when

power was being received, indicating the touchpad was

powered correctly. The data and clock lines required

extensive research and a lot of trial and error to find the

correct two lines.

Communication is allowed to begin or transmit when

both lines are high also known as “idle”. The touchpad

generates the clock signal, but the host has total control over

the clock and can pull the clock low to inhibit

communication. Next the host can pull data low and

releases clock, which is the “Request-to-Send” state.

Fig. 5. A diagram of how clock and data work to send data from
the touchpad.

As seen in Fig. 5 the packets being sent contain 11 bits.

1 start bit, 8 data bits, 1 parity bit, and 1 stop bit.

Next, the keyboard is configured using a matrix format.

The ribbon cable from the keyboard has 24 pins, which

means there are pins allocated to being inputs and outputs.

In this case, 8 pins are used for inputs and 16 for outputs.

When a button is pressed the input goes high and a key is

sent. The overall programming of the keyboard will be

described in more detail in the Software Detail section.

Now let’s see how the Bluetooth, touchpad, and

keyboard all communicate to make a system. The Atmega

2560 is at the heart of operation and the essential function

of communicating to the Bluetooth module.

Fig. 6. An overall system of how Bluetooth works with the
Keyboard and Touchpad.

C. USB 2.0 Phone Charging

As mentioned in a previous section, we used the LM7805

linear voltage regulator from Texas Instruments to power

our USB 2.0 phone charging circuit. This circuit comprised

of an input ranging from 7V to 35V, since our power supply

is an 11.1V battery our input to this USB circuit will be at

an 11.1V max input. This circuit will output 660mA of

charging current to the Android phone. For the minimum

threshold of 1.2V between the data lines of the USB 2.0, we

used a voltage divider from the output of the LM7805 chip,

which has a 5V output, to divide the voltage in half to 2.5V

between the data lines. By having a data line voltage greater

than 1.2V, we have access to a faster mode of charging for

Android devices rather than having a minimum of 500mA

of slow charging. If the Android phone were to be at about

50% battery, the USB 2.0 charging can have the phone

charged up to 100% in about 2 hours.

D. Battery Charging

As mentioned in a previous section, we used the

BQ24600 Li-Ion battery charger chip from Texas

Instruments. This chip can have an input from 5V to 28V

and up to a 10A charge current. But, we are using a 12V

input for the circuit and have set the output current to 3A

using a resistor divider for the VFB pin on the BQ24600

chip. We used the following equation to set the value for

the resistor divider:

VBAT = 2.1V * [1 + R2/R1]

Using R1 as 100kΩ and VBAT as 11.1V, then solving for

R2 with a value of 430kΩ. We also set the charging current

to 3A by using the following equation for current

regulation:

ICHARGE = VISET / 20*RSR

Using ICHARGE as the value we want as 3A and a default

value for the sense resistance of 10mΩ. We get a value of

0.6V for VISET which falls within the operating range of

-0.3V to 3.3V.

E. Battery LED Indication

As mentioned in a previous section, we used the LM3914

Dot/Bar Display LED Driver by Texas Instruments. This

chip can drive a total of 10 LEDs at the same time, can also

be chained with other LM3914 chips to drive more than 10

LEDs but for our application 10 LEDs is ideal. Each LED

indicates a voltage level of 0.1V to 0.2V, so at max capacity

all 10 LEDs are active. For example, when 8 of the 10 LEDs

are on, this tells us that the battery has lost about 0.4V of

capacity. Moreover, the LM3914 chip was configured with

a 50kΩ Potentiometer, as mentioned in the datasheet we

used this potentiometer to set our LEDs to indicate whether

or not our battery of 11.1V was at full charge or needing to

be charged. We also have an integrated switch at the input

to not draw unnecessary current whenever you don’t need

to view the battery voltage level at any given time.

V. WIRELESS TECHNOLOGY

This section will cover the wireless technologies that are

being implemented into our project along with the ones that

were researched.

To achieve screen mirroring only two wireless

technologies were researched which are Miracast and

DLNA. The best option to utilize in our project was

Miracast. DLNA (Digital Live Network Alliance) is also

one of the powerful standards for wireless screen mirroring,

the only issue is that it was introduced by Sony so it tends

to produce the best output with Sony devices. Furthermore

DLNA operates using a client-server model which means

that the server is the device that is streaming and the client

is the device that is receiving the stream via DLNA. But the

main reason DLNA was not the best option for screen

mirroring is because it works only with files and does not

support videos or browsers to be mirrored on the client

device.

Miracast is one of the most widely available technologies

for wireless screen mirroring. It implements peer to peer

Wi-Fi Direct standard and allows streaming of 1080p HD

videos as well as 5.1 channel surround sound. Hence

Miracast was the best option to use since every Android

phone supports Miracast since Android version 4.0.

THE ENGINEERS

Kevin Ogando is a 23 year-old

electrical engineer major and is

seeking a career in the power

industry in Orlando, Florida.

Anirudh Singh is a 23 year-old

computer engineer major and is

seeking a career in the software

industry in Orlando, Florida.

Ameer Hakh is a 23 year old

electrical engineer and loves

electronics. Will work at Irvin

Technologies Inc. in Winter

Springs, Florida.

Nicholas Steele a 27-year old

computer engineering student. Nicks

career goals are to work in software

specialized positions and possibly

pursue his master's in artificial

intelligence.

ACKNOWLEDGEMENTS

Our group would like to make the following

acknowledgements to great leadership and helpful

suggestions. We would like to acknowledge Dr. Samuel

Richie, Dr. Lei Wei, and Professor Michael Young. Along

with Irvin Technologies Inc. for allowing us to use their lab

and tools.

REFERENCES

[1] Abusultan, Monther, et al. “Engineering Design

Constraints for Mobile Wirelessly Communicating Maze

Solving Robots.” Montana State University, Jan. 2008,

www.ece.montana.edu/seniordesign/archive/SP08/robot_c

omm/index_files/Constraints_Paper_Rev01.pdf.

[2] “LM2576/LM2576HV Series SIMPLE SWITCHER®

3A Step-Down Voltage Regulator.” Jameco Electronics,

Jameco Electronics, Aug. 2004,

www.jameco.com/Jameco/Products/ProdDS/836123.pdf.

[3] “What Is a Bypass Capacitor?” Learning about

Electronics,

www.learningaboutelectronics.com/Articles/What-is-a-

bypass-capacitor.html.

